
Principles of Public Key Cryptography

Instead of using single symmetric key shared in advance by the parties for realization of symmetric
cryptography, asymmetric cryptography uses two mathematically related keys named as private key
and public key we denote by PrK and PuK respectively.
PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due to
the great importance of PrK secrecy for information security we labeled it in red color. PuK is a non-
secret personal key and it is known for every user of cryptosystem and therefore we labeled it by
green color. The loss of PrK causes a dramatic consequences comparable with those as losing
password or pin code. This means that cryptographic identity of the user is lost. Then, for example, if
user has no copy of PrK he get no access to his bank account. Moreover his cryptocurrencies are lost
forever. If PrK is got into the wrong hands, e.g. into adversary hands, then it reveals a way to
impersonate the user. Since user’s PuK is known for everybody then adversary knows his key pair
(PrK, Puk) and can forge his Digital Signature, decrypt messages, get access to the data available to
the user (bank account or cryptocurrency account) and etc.

PuK=F(PrK): PrK = x = randi(p-1); PuK = a = g x mod p.

Let function relating key pair (PrK, Puk) be F. Then in most cases of our study (if not declared
opposite) this relation is expressed in the following way:

PP = (p, g).

In open cryptography according to Kerchoff principle function F must be known to all users of
cryptosystem while security is achieved by secrecy of cryptographic keys. To be more precise to
compute PuK using function F it must be defined using some parameters named as public parameters
we denote by PP and color in blue that should be defined at the first step of cryptosystem creation.
Since we will start from the cryptosystems based on discrete exponent function then these public
parameters are

Notice that relation represents very important cause and consequence relation we name as the direct
relation: when given PrK we compute PuK.

PrK=F-1(PuK).

Let us imagine that for given F we can find the inverse relation to compute PrK when PuK is given.
Abstractly this relation can be represented by the inverse function F-1. Then

In this case the secrecy of PrK is lost with all negative consequences above. To avoid these
undesirable consequences function F must be one-way function – OWF. In this case informally OWF
is defined in the following way:
1. The computation of its direct value PuK when PrK and F in are given is effective.
2. The computation of its inverse value PrK when PuK and F are given is infeasible, meaning that to
find F-1 is infeasible.
The one-wayness of F allow us to relate person with his/her PrK through the PuK. If F is 1-to-1, then
the pair (PrK, Puk) is unique. So PrK could be reckoned as a unique secret parameter associated with

Course Works topics are presented in my Google drive:

https://docs.google.com/document/d/11Bwk8HXLvjvzAEImcRiFcacwnrrz0lBs/edit?usp=sharing&ouid=
111502255533491874828&rtpof=true&sd=true

You must prepare Poster Report according to the requirements presented in my Google drive:
https://docs.google.com/document/d/17yQRackSOBIkNLMD3uqeSBdtneuCwU8r/edit?usp=sharing&ouid=
111502255533491874828&rtpof=true&sd=true

111_011 Schnorr-Id-Sig

 111_011 Schnorr-Id-Sig++++ Page 1

https://docs.google.com/document/d/11Bwk8HXLvjvzAEImcRiFcacwnrrz0lBs/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/11Bwk8HXLvjvzAEImcRiFcacwnrrz0lBs/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/17yQRackSOBIkNLMD3uqeSBdtneuCwU8r/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/17yQRackSOBIkNLMD3uqeSBdtneuCwU8r/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

the pair (PrK, Puk) is unique. So PrK could be reckoned as a unique secret parameter associated with
certain person. This person can declare the possession or PrK by sharing his/her PuK as his public
parameter related with PrK and and at the same time not revealing PrK.
So, every user in asymmetric cryptography possesses key pair (PrK, PuK). Therefore, cryptosystems
based on asymmetric cryptography are named as Public Key CryptoSystems (PKCS).
We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob.
Everybody is having the corresponding key pair (PrKA, PuKA) and (PrKB, PuKB) and are
exchanging with their public keys using open communication channel as indicated in figure below.

PP = (p, g).

Key generation

Randomly choose a private key x with

1 < x < p − 1.

•

The private key is PrK = x = randi(p-1)•

Compute a = g x mod p.•

The public key is PuK = a = g x mod p.•

Identification.1.

If person can prove that he/she knows PrK corresponding to his/her PuK without revealing any
information about PrK then everybody can trust that he is communicating with person posessing
(PrK, Puk) key pair. This kind of proof is named as Zero Knowledge Proof (ZKP) and plays a
very important role in cryptography. It is very useful to realize identification, Digital Signatures
and many other cryptographically secure protocols in internet. In many cryptographic protocols,
especially in identification protocols PrK is named as witness and PuK as a statement for PrK.
Every actor is having the corresponding key pair (PrKA, PuKA) and all PuK are exchanged
between the users using open communication channel as indicated in figure below.
Let Bob is sure that PuKA is of Alice and wants to tell Alice that he intends to send her his photo
with chamomile flowers dedicated for Alice. But he wants to be sure that he is communicating
only with Alice itself and with nobody else. He hopes that at first Alice will prove him that she
knows her secret PrKA using ZKP protocol. In general, this protocol is named as identification
protocol, it is interactive and has 3 communications to exchange the following data named as
commitment, challenge and response.

Registration phase: Bank generates PrKA = x and PuKA = a to Alice and hands over this data
in smart card, or other crypto chip in Alice's smart phone, or in software for Smart ID.

 111_011 Schnorr-Id-Sig++++ Page 2

Schnorr Identification: Zero Knowledge Proof - ZKP PP = (p, g).

Schnorr Id is interactive protocol, but not recurent as it realized to prove the mirckle words.
Schnorr Id Scenario: Alice wants to prove Bank that she knows her Private Key - PrKA = x which
corresponds to her Public Key - PuKA= a = g x mod p not revealing PrKA= x.

Correctness:

gres mod p = gi+xh mod(p-1) mod p = gigxh mod p = t(gx)h mod p = tah mod p.

Schnorr Id Scenario: Alice wants to prove Bank that she knows her Private Key - PrKA = x which
corresponds to her Public Key - PuKA= a not revealing PrKA: Zero Knowledge Proof - ZKP
Protocol execution between Alice and Bank has time limit.
Alice's computation resources has a limit --> protocol must be computationally effective.
PrKA=x is called a witness and corresponding PuKA=a=gx mod p is called a statement.
This protocol is initiated by Alice and has the following three communications.

P(x, a) - Prover - Alice V(a) - Verifier - Bank

C:\Users\Eligijus\Documents\REKLAMA

 111_011 Schnorr-Id-Sig++++ Page 3

 Schnorr Signature Scheme (S-Sig).

In general, to create a signature on the message of any finite length M parties are using cryptographic
secure H-function (message digest).
In Octave we use H-function
>> hd28('…') % the input '…' of this function represents a string of symbols between the commas.
 % the output of this function is decimal number having at most 28 bits.

Let M be a message in string format to be signed by Alice and sent to Bob: >> M='Hello Bob'
For signature creation Alice uses public parameters PP=(p, g) and

Alice’s key pair is PrKA=x, PuKA= a = g x mod p.

r=gu mod p. (2.19)
Alice chooses at random u, 1<u<p-1 and computes first component r of his signature:

s=u+xh mod (p-1). (2.21)
 h=H(M||r), (2.20)

Alice computes H-function value h and second component s of her signature:

Alice’s signature on h is =(r, s). Then Alice sends M and  to Bob.

After receiving M' and , Bob according to (2.20) computes h'

 h'=H(M'||r),

gs mod p = rah' mod p. (2.22)
 V1 V2

and verifies if

Ver(a,,h')=V{True, False}{1, 0}. (2.23)

Symbolically this verification function we denote by

This function yields True if (2.22) is valid if: h=h' and PuKA= a =F(PrKA)= gx mod p.

 and: M=M'

PrKA = x

PrKA = x

ϭ

PuKA = a

PuKA = a

}r
s

c}
ε
δ

}

ε

δ
ε

δ

m
m < pm

m < p

 111_011 Schnorr-Id-Sig++++ Page 4

>> p= int64(268435019);
>> g=2;

>> x=int64(randi(p-1))
x = 89089011
>> a=mod_exp(g,x,p)
a = 221828624

>> m='Hello Bob'
m = Hello Bob
>> u=int64(randi(p-1))
u = 228451192
>> r=mod_exp(g,u,p)
r = 33418907
>> cc=concat(m,r)
cc = Hello Bob33418907 % cc is a string type variable
>> cc=concat(m,'33418907')
cc = Hello Bob33418907
>> cc=concat(m,'r')
cc = Hello Bobr

>> h=hd28(cc)
h = 104824510 104824510

>> s=mod((u+x*h),p-1)
s = 147250342

>> g_s=mod_exp(g,s,p)
g_s = 185672370
V1=g_s;
>> a_h=mod_exp(a,h,p)
a_h = 263774143
>> V2=mod(r*a_h,p)
V2 = 185672370

A: ZKP of knowledge x:

PrKA = x = randi(p-1)
PuKA = a = gx mod p
1.Computes commitment
t for random number i:
 i=randi(p-1)
 t=gi mod p
3.Computes response res:
res=i+xh mod (p-1)

B: PuKA = a

2.Generates challenge h:
h=randi(p-1)

Verifies:

h

t, a t, a

res res

h

t

h

res

 111_011 Schnorr-Id-Sig++++ Page 5

 i=randi(p-1)
 t=gi mod p
3.Computes response res:
res=i+xh mod (p-1)

Verifies:

gres=tah mod p

res res

Time

Bob: let M'=M.

1.Computes h=H(M||r).
>> h=concat(M,r)
2.Verifies signature on h.

Alice: 'Hello Bob'
>> M='Hello Bob'

M; =(r,s); a
M'; =(r,s); a

 111_011 Schnorr-Id-Sig++++ Page 6

